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ABSTRACT 

The effects of solar radiation heating on a large, thin, shallow spherical orbiting shell 

system are studied. The shell is representative of a large antenna /reflector system which could 

also be gravitationally stabilized by connecting a sub-satellite to a long tether. After determining 

the steady state temperature distribution across the thickness of the shell, the corresponding 

thermal deformation is estimated as a function of the solar incidence angle and material properties. 

The closed-loop dynamic response of the shell is simulated by using LQR control design synthesis 

and assuming that 12 point actuators are placed on the outer surface and edge of the shell. 

Calculations also indicate that the shell's transverse elastic vibrational frequencies may differ 

significantly from their nominal values due to the solar-thermal influence. 

A practical control strategy for the minimum-time   maneuver problem has been developed 

and successfully applied to the Naval Research Laboratory's      Reconfigurable Spacecraft Host 

for Attitude and Pointing Experiments (RESHAPE) hardware test facility. This is the first time 

that the bang-bang type and feedback control strategy has been applied to the RESHAPE facility 

by including a flexible appendage which is represented with the attachment of a spherical 

•pendulum device to the edge of the RESHAPE platform. The tests resulted in an excellent • 

correlation between the numerical simulations and the experimental test results, and demonstrates 

the effectiveness of the feed forward and state-error feedback control strategy. 
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I. INTRODUCTION 

A tethered reflector/antenna system has been suggested for possible use in mobile 

communications, power transmission and astronomical observations and has been the subject of 

study in several past AFOSR grant reports. The tether would be attached to a large orbiting 

antenna/reflector and also to a small subsatellite. For communications and power generation the 

subsatellite could contain the electronic feed or power generating system. The system could be 

gravitationally stabilized by deploying a small (200-500 kg.) subsatellite a distance of lkm 

downward along the local vertical. 

The second chapters of this report extends the previous analyses of the effect of 

environmental disturbances due to solar radiation pressure to now include the heating attributed 

to the thermal gradients which result in thermally induced deformations. In many cases there will 

be a noticeable interaction between the solar radiation pressure and the thermally distorted 

system. In this chapter the dynamics and control of an orbiting shallow spherical shell subject to 

solar-thermal interaction is studied. Expressions for the thermal deflections and resulting solar 

radiation pressure induced torques are developed. Control of the orientation and shape of the 

shell can be accomplished by the use of actuators located at certain points on the shell surface 

and outer edge. 

In last year's grant report the successful testing of three-axes near minimum time 

maneuvers using the Naval Research Laboratory's Reconfigurable Spacecraft Host for Attitude 

and Pointing Experiments (RESHAPE) was reported. An excellent correlation between 

numerically calculated and experimentally obtained results was accomplished. These previous 

results were based on a rigidized model of the RESHAPE platform representative of three-axis 
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maneuvers of a rigid spacecraft system. Recently these results haye been extended by utilizing a 

pendulum attached vertically by a string to the edge of the RESHAPE's circular platform which 

could represent a flexible appendage. The first degree of freedom of the pendulum can be 

described by a swing motion with respect to a vertical line through the attachment point in the 

tangential plane, and represents the first flexible appendage mode. A second degree of freedom 

is represented by the out-of-the tangential plane angular motion. In Chapter Three of this report 

the recent numerical and experimental results of near-minimum time maneuvers of the NRL 

RESHAPE test facility with the flexible pendulum appendage are described. The control strategy 

is based on the feedforward (open-loop solution) plus the state-error feedback control; this 

strategy has been successfully used in the previous experimental study based on the rigid-model 

of the RESHAPE. This is the first time that a bang-bang type and feedback control strategy has 

been applied to the RESHAPE testing facility with a flexible appendage included. 

Finally Chapter Four summarizes the over-all conclusions and suggestions for further 

work. 
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II. SOLAR - THERMAL EFFECTS ON A SHALLOW SPHERICAL SHELL IN ORBIT 

Abstract 

The effects of solar radiation heating on a large, shallow, spherical shell in orbit are considered. 
After determining the steady state temperature distribution across the shell thickness, the thermal 
deformation experienced is estimated as a function of the material properties and the solar 
incidence angle. There is a harmonic variation of the physical dimensions of the shell as a 
function of orbital position. The dynamic response of the shell is simulated by utilizing a 
configuration of twelve control actuators placed on its outer surface and on its edge, and utilizing 
the LQR design methodology. More significantly, calculations show that the frequencies of 
transverse vibrations of the shell elastic modes experience considerable deviation from their 
nominal values due to solar-thermal effects. This shift in the frequencies must be taken into 
consideration, for large shells which are inherently flexible. 

2.1 Introduction 

The effect of environmental disturbing influences on large space structures in orbit has received a 
great deal of attention in recent years. The major environmental disturbances on such structures 
will be due to solar radiation pressure and solar heating. The use of thin, shallow, spherical, shell 
type structures as principal components of large space structures is also quite widespread. In 
particular, shallow spherical shell type structures may be used as reflectors or antennas to 
perform various tasks in such disciplines as telecommunications, astronautics, space exploration, 
etc. The effect of solar radiation pressure acting as a load on a class of flexible shallow, 
spherical shell type structures has been considered previously1. It was determined that the solar 
radiation pressure interacts with the elastic modes of the shell to produce significantly higher 
rigid modal oscillations as compared to the oscillations produced if the shell were treated as 
completely rigid. Another important environmental effect is the heat due to solar radiation that 
results in thermal gradients in a structure. For specific materials, the thermal, mechanical, and 
surface properties are such that the deformations that are caused by thermal gradients can 
sometimes result in dynamic instability of the orbiting structure2. In most cases, there is also a 
significant interaction between the solar radiation pressure and the thermally deformed structure. 
The dynamics of orbiting beams and plates in the presence of such a solar-thermal interaction has 
also been investigated3. In this paper, the dynamics of an orbiting shallow spherical shell 
subjected to such an interaction will be studied. Expressions for the thermal deflection of a 
spherical shell will be developed. The solar radiation pressure torque acting on such a thermally 
deformed shell will be estimated and an attempt will be made to control the attitude of the shell 
by means of actuators strategically placed on its outer surface and on the edge. Finally, the 
extent of any thermoelastic interaction will be investigated by considering the shift in the natural 
frequencies of the shell flexible modes as a result of the solar-thermal interaction. 
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2.2 Assumptions 

The general problem of solar-thermal interaction and the associated thermoelastic problem is 
very complicated for structures that span more than one dimension. The problem becomes even 
more complicated if thermal transients, the shadowing of the structure and the non-linear 
boundary conditions associated with radiation heat-transfer from the exposed surfaces are all 
taken into account. In the present analysis, the following simplifying assumptions are made in 
order to reduce the problem to manageable proportions. 

1. The thin, shallow, spherical shell is assumed to move in a 100% sunlit, circular orbit at a 
geosynchronous altitude. Furthermore, solar radiation is restricted to the plane of the 
orbit. 

2. The effects of the Earth reflected solar radiation and the thermal radiation emanating from 
the Earth are neglected. 

3. The inherent time lags in the heat transfer process are very small compared with the 
orbital period (= 24 hours for a geosynchronous orbit) and are ignored. 

4. Owing to the small thickness of the shell, the radiation from its edge can be neglected. 
5. The local shadowing of a part of the shell due to the remaining part can be neglected 

because of the extreme shallowness of the shell. 
6. The steady state temperature distribution is strictly a function of the radial coordinate. 

Thus, the temperature varies only along the shell thickness. This necessarily implies that 
at steady state, the isothermal surfaces are concentric spheres. Another implication of 
this assumption is that no shear stresses are introduced as a result of the thermal gradient. 
As a consequence, the thermal deflection will have a lone radial component. 

7. For the simulation times (2-3 orbit periods) considered in the analysis, it will be assumed 
that the position of the Sun remains fixed with respect to an Earth-fixed inertial frame of 
reference. 

2.3 The Thermal Problem 

The equation that governs the conduction of heat in a spherical domain is given by: 

BT , 8T2       2 dT 
—  = KV

2
 T = K (   + — — 

dt dr
2       r dr 

KV
2
T = K (   ♦ — — ) (1) 

where, K is the thermal diffusivity, r is the radial coordinate (along the shell thickness), t denotes 
time and T = T (r,t) is the temperature. The steady state temperature distribution, is given by: 

d2T      „  dT 2 — = 0 (2) 
dr2 dr 

The solution to (2) can be achieved4, by changing the dependent variable to rT. If r0, ri5 and T0, T; 

2.2 



respectively denote the radii of curvature and the steady temperatures at the outer and inner 
surfaces of the shell, then it can be easily shown that: 

T.r, (r -r)  * T r (r-r.) 
T(r)  -     '  '*   »    ' ^  (3) 

Fig. 1. shows the cross-sectional geometry of the shallow spherical shell along with it 
dimensions. Fig. 2. shows the cross-section of the shell in the orbit plane in a state of thermal 
equilibrium. Here, t, denotes the unit vector in the direction of the incoming solar flux, making 
an instantaneous angle of 0; with the outward normal to the shell. The solar incidence angle 0;, 
is assumed to be a constant for a small interval of time. During this interval, the surface facing 
the sun, S0, attains a steady state temperature T0, while the surface away from the sun, Si5 attains 
a steady state temperature Tj. The total heat leaving the shell from the two surfaces should equal 
the heat received by the shell from the solar flux. At equilibrium, the heat flowing through the 
shell along the radial direction must also equal the heat radiated from the unexposed surface of 
the shell. The above two statements represent heat energy balance equations, the mathematical 
equivalents of which will be used to solve for the steady state temperatures attained by the outer 
and the inner surfaces of the shell. 

If e0 and ej respectively denote the emissivities of the outer and the inner surface of the shell, o, 
the Stefan-Boltzmann constant (=56.7 X 10"12 KW/m2-K4), k, the coefficient of thermal 
conductivity of the shell material, h, the nominal value for the thickness of the shell, ccs, the 
absorptivity coefficient of the exposed shell surface, and G, the intensity of solar radiation (= 0.8 
KW/m2) for Earth-orbiting structures, then the above mentioned statements of thermal 
equilibrium result in: 

4 4 
e oT   * e,oT. = a Gcos9.(t) o        o 1        ]_ s 1 

4      kiT.-TJ 
e,ar. 

(4) 

'*    i h 

when the outer surface of the shell is exposed to solar radiation and, 

4 4 
e±oT. * eooT   •= asGcos9x(t) 

.    4      k{T,-T) (5) 
e OT    =  

o        O h 

When the inner surface of the shell is exposed to solar radiation. In the present analysis, 
depending on the instantaneous (angular) location of the shell in its orbit, the set of equations 
represented by either (4) or (5) will be used to numerically solve for the steady state temperatures 
attained by the inner and outer surfaces. The Newton-Raphson algorithm will be used for this 
purpose. It is clear from (4) and (5) that the amount of thermal radiation received by the shell 
from the sun is greatest when the outward normal vector to the exposed shell surface and the unit 
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vector in the direction of the incoming solar flux are parallel to each other. This occurs (when 6; 

=0), twice per orbit. It is reasonable to expect that the thermal gradient, | T0 - T( | will be greatest 
at these two locations. The results can be seen in Fig. 3, which shows the steady state surface 
temperatures as a function of time, for a shell made up of polyamide (k = 0.245 X 10"3 KW/m- 
°K) and when e0 = e, = 0.05 and as = 0.2. It can be seen that for each orbit, the only period of 
time when the inner surface attains a steady state temperature greater then the steady state 
temperature of the outer surface is when the inner surface is exposed to the sun. 

2.4 Thermal Deformation 

With the assumption that the temperature varies only along the radial direction, it can be 
demonstrated5 that the thermal deflection is also a function of the radial coordinate r. Figure 4, 
shows an infinitesimal element of the shallow spherical shell in a state of spherically symmetric 
stress. It can be demonstrated5, that under these conditions all shear stress components vanish 
and o9 = aT= a^ which will be referred to as the tangential stress component. Utilizing the. stress 
equilibrium equations, the stress-strain constitutive relations and the strain-displacement field 
equations in the spherical domain, it can be shown that5: 

\(r) - ~^-   [ p2ar(p)dp 1 1-V    r-3     J 

IE   1 

p-i (6) 
1-v r 

E    ,       2E   B 

l-2v 

F      1       P'r 
o.(r)  - -T=--=T    [ P2ar(p)dp 

(7) 
E     , E     B        aTE 

-A 
1-2V lA>   r

3 1-V 

p-r 11 ^ ^ 

+V   1 r    2   m/   ,   , 
u{r)  =  / pzar(p)dp 

1-V     r2 J 
r P-, (8) 
r 

Ar.-L 
,-2 

where, E, v, and a are respectively the Young's modulus, the Poisson's ratio and the coefficient 
of linear expansion of the material of the shell. A and B are constants to be determined from the 
boundary conditions. Using (3) in (8), and making the assumption that a does not vary across 
the shell thickness, it can be shown that: 
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(T.r.-Tr)r „    o 
u(r,   . ——   [-{Tr-      2  2    °  °     °}(r2-r^) 

1-v   r2      2      °  ° r.-r 2 
r ,    o (9) 

1    (T.r.-T r )        ,    3 n 
l_!_^_i_2_2i(r3-r.)]   ♦ Ar ♦ — 

In order to determine A and B one can impose the condition that the normal radial stress 
components vanish at the inner and outer surfaces. 

Or(ri)   - or(ro)  - 0 (10) 

Using (3) in (6) results in, 

own 1        ■      (T.r.-T r ) r „    o 
r 1-v  r3 2 ° ° r.-r i 

X 2 0 

1   (Tiri-roro) ,_3 _34,   .       B     ,       2E    B (rJ-r.)]   ♦ —— A 
^ 1-2V 

Using (11) in (10), one can solve for A and B as: 

i  9\>      ?rv 1 ( T.r.-T r ) r 

1-v 3 
r - o 

3 
r . 

2 

L2l o    o r.-r 
2         0 

<4 r*„ 1 

3 

(T.r. 

r. 
i 

-T r ) 

-r 
r -r .   ] 

O      1 

Finally, using (12) and (13) in (9) results in: 

01) 

(12) 

3 
-Uv     ar7 1                (T.r.-T r ) r 

B=  [ — { T r } 
1-v     3    3 2      °  °           r.-r ro-ri -    o                                                                                          (13) 

7    ?      1 (T.r.-T r )       33 
( r

2-r
2 ) + A ^    °  °    ( r^-r-3 ) ] 

O       l'      3 r..r                      Q       2 
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1+\j    ry        1 [T.r.-Tr)r „    p 
u   r    = -    [—{Tr- }(rz-r   )■ 

1-V   r2      2      °  ° r.-r 2 
-1- 2 0 

i    (T.r.-r r )       ,    3 a 
(rJ-r.)]- 

z 3    3 
i    ° (1-v) (r -r.) 

°    X (14) 
1 (T.r -T r ) r ?    o v    ' 

[ 1 {T r -      J   2    °  °     °} (r -r.)♦ 
2 °  ° r.-r °    i 

2 O 

-i    (T.r.-T r )       ■>     ■>                               {l*v) r 
 2  1    ° °    (r-r.)] [2(l-2v)r+ -] 

Since the isothermal surfaces inside the shell are concentric spheres, (14), gives the radial 
displacement of the generic isothermal at radius r e [ri5r0]. For the problem at hand, the solar 
radiation pressure torques acting on the thermally deformed shell depend primarily on the radius 
of curvature of the inner and outer surfaces. Thus, the radial displacements on these surfaces are 
of special interest. It is easily verified that: 

3ar.       i (T.r.-T r ) r 
u{r.)   =       -   T r } 

3    3      2      ° ° r.-r ■ 
■     ori (15) 
o     ?      i    (T.r .-T r )       -3     -3 

[r-r2A*±      1X    °  °    [r-r*)] 

3ar        1 (T.r .-T r ) r 
u(r )   =  —   [ — {Tr  

3    3      2      °  ° r.-r 
ro'ri (16) 

o     o      1    (T.r ,-T r )       -a     T 
{r-r.)* (r  -r .) ] 

The deformation given by (14) will be along the direction of the surface that attains the greater 
steady state temperature. Because of the symmetric nature of this deformation, the overall effect 
is to cause an expansion of the interior of the shell without altering its shape. As the shell moves 
in its orbit, the change in the intensity of solar radiation to which it is exposed causes it to 
experience periodic heating and cooling phases which alternate once for each orbit (Fig.3). As a 
consequence of these alternate heating and cooling phases, the shell undergoes periodic 
expansions and contractions that cause the principal dimensions of the shell (a, ri5 r0, and, H) to 
vary, but it retains its spherical shape. 

Fig. 5 shows the deformation undergone by the generic isothermal surface at r to a position at r', 
as dictated by (14). If a', H', and iir' respectively denote the altered values of the base radius, the 
height, and the negative of the distance of the center of the center mass from its center of 
curvature, then from the geometry of Fig. 5, it is obvious that: 
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a1-a—       H' - r' - <Jr'2-a'2       i]/' - -r' ♦ — (17) 
r 2 

Figures 6,7,8,9 and 10 respectively show the variation of the shell inner radius of curvature, the 
shell outer radius of curvature, the shell thickness, the shell base radius and the shell height as a 
function of orbital time. The shell inner and outer radii experience significant variations with 
time due to solar-thermal effects. A peak deviation of nearly 17 m from the nominal value of 
5000 m is observed. Figures 8-10 show that the remaining dimensions of the shell only undergo 
small changes in magnitude. 

2.5 The Solar Radiation Model 

The solar radiation pressure torques induced about the center of mass of the deformed shell will 
form the focus of attention of this section. Expressions for the solar radiation forces and torques 
acting on space structures of arbitrary shape were derived by Karymov6. IntheKarymov 
formulation, solar radiation force and torque expressions are first obtained for the separate cases 
of totally absorbing and totally reflecting surfaces. If Na and Nr denote the solar radiation 
torques on a completely absorbing and a completely reflecting surface, respectively, then, 

N   - h    t X fp {t.n)dS 
a o J 

„       ..      ..«..,..„. 0«) 
r 

S 

2h    fn X p (t.n)2dS 

Where, h0 is the solar radiation constant = 4.64 X 10"6 N/m2, t is the unit vector in the direction 
of the incoming solar flux, p is the position vector of the generic point on the shell surface from 
its center of mass, n is the outward unit normal vector at the generic point, and dS is the area of 
the infinitesimal element on the deformed shell surface. The integration in (18) is over the 
surface of the structure that is actually exposed to solar radiation and is bounded by the condition 
t.n i 0. Fig. 11 shows a shell with outer radius of curvature R and the coordinate frame used to 
model solar radiation effects. The origin of the coordinate frame is at the instantaneous center of 
curvature of the shell and the z-axis is aligned with its symmetry axis. From Fig. 11, the 
following expressions can be obtained: 

p = R sin 4> cos 9 f + Ä sin $ sin 9 j* (flcos <t>*\|/) k 
t ~ -sinacos ß f-sinasinß j-cosa k ,,QX 

n = cos9sin<t>f ♦ sin9sincj>j + cosfyk 
dS = K2sin(t>d9d<t> 

Where a and ß are the two solar incidence angles that uniquely fix the orientation of t, and 
(R,6,(|)) are the spherical coordinates associated with a generic point on the shell surface. Using 
(10) in (18), one can derive the following expressions for the solar radiation torques: 
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Nax = nhnR2sucas$ [R ( c<t>„-c3<t>J ♦i|rs2cj>n 

N    = ul 
ay 

N     = 0 

Na   = nhoR2sctcac$[R{c3$o-c<$>o)-i\is2<$>o] (20) 

N    = nh Ä2iirsacasßs40 rx o       T r- T 

, 4 Nr  = -nhoß2itrsacacßs44)o (21) 

N    = 0 

Here, (|>0 denotes the constant apex angle of the shell. Furthermore, since the unit vector in the 
direction of the incoming solar flux is assumed to lie entirely within the orbit plane, ß = n/2 will 
have to be used in (20) and (21). With this assumption, the solar radiation pressure induces a 
torque only about the pitch axis of the shell. In the Karymov formulation, the overall solar 
radiation torque acting on a shell whose surface has an arbitrary coefficient of reflectivity, e, is 
given by: 

N =   (l-e)Na + eNr (22) 

As the shell moves about in its orbit, the solar radiation torques induced (equations (20)-(21)) 
vary not only because of a variation in the solar incidence angles a and ß, but also because of a 
variation in the dimensions of the shell due to thermal effects (Figures 6-10). Figures 12 and 13 
show the variation of the solar radiation torque acting about the pitch axis for the cases of a shell 
with a completely absorbing and a completely reflecting surface, respectively. Also shown in 
these figures is the variation of the torques when the thermal deformation of the shell is not 
considered. The figures demonstrate that the inclusion of thermal deformation effects, results 
only in a negligible increase in the solar radiation torque induced. 

2.6 Equations of Motion 

The equations of motion of an orbiting shallow spherical shell were derived by Bainum and 
Kumar7. The linearized equations of a completely rigid shell can be shown to be: 

c 
q " - 3Q q   - 

T    2 
J CO 

x    C 

C 
q " * 4Q q   *  (1 - Q ) q '-  v— m% 
^y y^y y  ^y 2 v^) 

q"-Oa-  (1 ♦0I)g 

J CO 
y  c 

C 
1 z 

T    2 
J CO 

*   c 

Here qx qy and qz respectively denote the shell pitch, roll, and yaw. Jx, Jy, and Jz denote the mass 
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moments of inertia of the shell about the axes of the reference frame of Fig. 11. Cx, Cy, and Cz 

denote the external torques acting about the axis denoted by the subscript. The attitude of the 
shell is assumed to be controlled by means of 12 actuators placed on the surface and on the edge 
of the shell in the configuration of Fig. 14. In Fig. 14, all actuators not on the edge of the shell 
produce forces directed along the normal to the surface at the point, whereas all actuators on the 
edge produce forces that have equal components along the normal to the surface, and along the 
tangent to the edge. Thus, the contribution to the external torques Cx, Cy, Cz in (23) is due to the 
solar-thermal effects as well as the restoring torques produced by the actuators. The equations of 
motion given by (23) are rewritten in state-space form as x' = A,x + B,u, and a full state feedback 
control law of the form u = -Kx, that minimizes the performance index: 

J =  f   x TQx * u TRu dt (24) 

is sought. Here, A! and E^ are the state and the control influence matrices, respectively, while Q 
and R are their corresponding weighting matrices. Using Q = 10016X6, and R = Ii2Xi2> the 
controlled response of the orbiting shell is simulated and the response of the pitch, the roll, and 
the yaw obtained is shown in Figures (15), (16), and (17) respectively. 

2.7 Effect on Flexibility 

The flexibility of the shell is modelled by assuming that the orbiting shell vibrates primarily 
along the transverse direction. The transverse elastic vibrations of a thin, shallow, spherical shell 
with a completely free edge were first derived by Reissner and Johnson8. They derive 
expressions for the natural frequencies and mode shapes of the shell and show that each mode 
shape is uniquely associated with a pair of integers (n,k), where n and k refer to the number of 
nodal meridians and circles, respectively. Furthermore, the frequency of vibration, oonk, of the 
(n,k)th mode is related to a frequency parameter \in k according to the relation: 

2 D 
n'k      hpa4 

4 Ca4 

n,k      DR2 
(25) 

where h is the shell thickness, p is the mass density, and E is the Young's modulus of the shell 
material. C = Eh is the longitudinal stiffness factor, and D = Eh3/12(l - v2), the bending stiffness 
factor, with v denoting the Poisson's ratio of the shell material. It can also be demonstrated8, that 
for the first few modes (for which the shell vibrates with zero or one nodal meridian) the 
frequency parameter, un k satisfies: 

(26) 
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which must be numerically solved for un>k. Here, Jn(.) and In(.), respectively denote the Bessel 
function and the modified Bessel function of the first kind of order n. Equation (25) can then be 
used to solve for the frequency of vibration wnk. In the context of the present problem, the 
variation of the physical dimensions of the shell from solar-thermal effects causes a shift in the 
natural frequencies of its elastic modes. Figures (18)-(23) show the variation of wnk with time 
for the first few modes. Also shown in the figures is the nominal value of o>n k for the specific 
mode. For the dimensions of the shell considered, these nominal values of the frequencies are 
quite closely packed. Consequently, there is a significant shift in the frequencies from the 
deformation caused by solar-thermal effects. In fact, for most of the first few modes, it is 
observed that the peak value of the frequency attained is actually larger than the nominal 
frequency of the next mode. 

2.8 Conclusions 

In this paper, a simple mathematical model that incorporates the solar-thermal effects on an 
orbiting shell has been presented. It has been demonstrated that for a shell made up of 
polyamide, a peak thermal gradient of nearly 3.6 °C is observed across the 1 cm shell thickness. 
The shell is alternately heated and cooled in its orbit in a periodic fashion due to a periodic 
change in the amount of solar radiation to which it is exposed. The shell experiences a peak 
increase in its radius of curvature of nearly 17 m along with smaller increases in its other 
dimensions. Although these changes in the dimensions do not significantly increase the solar 
radiation torque acting on the shell, they cause a significant variation in the frequencies of 
vibration of the shell flexible modes. This suggests that in the process of the design of control 
laws of large flexible shells, particular emphasis must be placed in controlling the transverse 
vibrations. This is particularly true when mission requirements dictate that stringent pointing 
accuracies be satisfied. 

References 

1. Kotaru, R. and Bainum, P.M., "On the Dynamics and Control of an Orbiting Flexible 
Shallow Spherical Shell in the Presence of Solar Radiation," Proceedings of the IX 
Virginia Polytechnic and State University Symposium on the Dynamics and Control of Large 
Structures, Blacksburg, VA, May 10-12, 1993, pp. 421-432. Also, The Journal of the 
Astronautical Sciences, Vol. 42, No. 4, October-December 1994, pp. 395-419. 

2. Frisch, H.P., "Thermally Induced Response of Flexible Structures: A method of 
Analysis," Journal of Guidance and Control, Vol. 3, Jan.-Feb. 1980, pp. 92-94. 

3. Krishna, R., and Bainum P.M., "Dynamics and Control of Orbiting Flexible Structures 
Exposed to Solar Radiation," Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, 
Sept-Oct. 1985, pp. 591-596. 

2.10 



4. Carslaw, H.S., "Introduction to the Mathematical Theory of the Conduction of Heat in 
Solids," Dover Publications, New York, 1945, pp. 135-136. 

5. Boresi, A.P., "Elasticity in Engineering Mechanics," Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey, 1965, pp. 227-229. 

6. Karymov, A.A., "Determination of Forces and Moments Due to Light Pressure Acting 
on a Body in Motion in Cosmic Space," Prikladnaia Matematica I Mechanika (English 
Translation of the Original Russian Article), Vol. 26, No. 5,1962, pp. 867-876. 

7. Kumar V.K., and Bainum P.M., "Motion of a Flexible Shallow Spherical Shell in Orbit," 
AIAA Journal, Vol. 20, No. 8, Aug. 1982, pp. 1113-1119.  . 

8. Reissner, E., and Johnson M.W., "On Transverse Vibrations of Shallow Spherical Shells," 
Quarterly of Applied Mathematics, Vol. 15, No. 4,1958, pp. 367-380. 

2.11 



O^.S    H 

CD Shell  enter  of  curvature 
CMi Shell center of nass 
Shell material' Potyanide 

p.  = 5000 n E =  «s/5 P?' » =  1.14  gn/cc „ 
k -  0.143  Btu/hr-ft-T 
• =  4Be-6  /°F 
. =  0.33 

Fig. 1. Shell Cross-Sectional Geometry 

Radiating Surface 
S0at   I 

Fig. 2. Thermal Gradient Across Shell Thickness 
Due to Solar Radiation Heating 

Outer Surface = —  Inner Surfice *- 

| 
3 
& 
S 

0 0.2        0.4       0.6        0.8 1 1.2        1.4        1.6        1 

Fig. 3. Variation of Steady State 
Surface Temperatures 

Fig. 4. Stress Distribution on an Infinitesimal 
Element in the Shell Interior 

5020 
Variation of Shell Inner Radius From Solar-Thermal Effects(360O0 Km) 

Fig. 5. Thermal Deformation of 
the generic Isothermal 

4990 
0        0.2       0.4       0.6       0.8        1 1.2       1.4       1.6       1.8        2 

Orbit Period 

Fig. 6. Shell Inner Radius Vs. Orbital Time 

2.12 



5020 
Variation of Shell Outer Radius From Solar-Thermal Eflecls<36000 Km) 

004, —ÜOn °f S''C" Tllict"eM From Solar-Thermal Effect» at 36000 K, 

0 0.2       0.4       0.6       0.8 1 1.2       1.4        1.6        1.8 2 

Orbit Period 

Fig. 7. Shell Outer Radius 
Vs. Orbital Time 

Variation of Shell Base Radius From Solar-Thermal Effects (36000 Km) 

0 0.2        0.4        0.6        0.8 I 1.2        1.4        1.6        1.8 2 

Orbit Period 

Fig. 9. Shell Base Radius 
Vs. Orbital Time 

m) 

Fig. 8. Shell Thickness 
Vs. Orbital Time 

1.004 
Variation of Shell Height From Solar-Thermal Effects at 36000 Km 

0 0.2        0.4        0.6        0.8 1 1.2        1.4        1.6        1.8 2 

Orbit Period 

Fig. 10. Shell Height Vs. 
Orbital Time 

<*, = 0.9 With Thermal Effects = - Without Thermal Effects 

Fig. 11. Reference Frame Used to Model Fig. 12. Solar Heating Effects on Pitch Torque 

2.13 



0.15 
a, = 0.9 Wilh Thermal Effects =■ - Without Thermal Effect»« 

0        0.2       0.4       0.6       0.8 1 1.2        1.4        1.6       1.8        2 

Orbit period 

Fig. 13. Solar Heating Effects on 
Pitch Torque 

Pitch Response it 36000 Km Altitude with 12 Actuators 

0.2        0.4        0.6        0.8 1 1.2        1.4        1.6        i.| 

Orbit Period 

Fig. 15. Shell Pitch Response 

Yaw Response at 36000 Km Altitude with 12 Actuators 

0 0.2        0.4        0.6       0.8 1 1.2        1.4        1.6 

Orbit Period 

Fig. 17. She}KYaw Response 

Fig. 14. The Twelve Actuator Configuration 

Roll Response at 36000 Km Altitude with 12 Actuatprs 

1 

0-2        0.4        0.6        0.8 1 1.2        1.4        1.6        I.I 

Orbit Period 

Fig. 16. Shell Roll Response 

Sll'f'In <0'' > Eigenfrequency From Solar-Thermal Effects 

Nominal Value = 1.027797 Rad/Sec 

1.03 

1.029 

P 1.028 

K. 1.027 

,P   1.026- 

1.025 

1.024 
° °2        °-4        °-S        0.8 1 1.2        1.4        1.6     T8 2 

Orbit period 

Fig. 18. Shell (0,1) Modal Frequency 
Vs. Orbital Time 

2.14 



1.031 
Shift In (1,1) Eigenfrequency Prom Solar-Therm»! Effect» 

0.2        0.4        0.6        0.8 1 1.2        1.4        1.6        1.8 

Orbit period 

Fig. 19. Shell (1,1) Modal Frequency 
Vs. Orbital Time 

1.032 
Shift In (0.2) Eigenfrequency From Solar-Thermal Effects 

~1 r- 

Orbit period 

Fig. 20. Shell (0,2) Modal Frequency 
Vs. Orbital Time 

1.035 
Shift In (1,2) Eigenfrequency From Solar-Thermal Effects Shift In (0,3) Eigenfrequency From Solar-Thermal Effects 

Fig. 

1.047 

_,  1.046 

0.2        0.4        0.6        0.8 1 1.2        1.4        1.6        l.i 

Orbit period 

21. Shell (1,2) Modal Frequency 
Vs. Orbital Time 
Shift In (1,3) Eigenfrequency From Solar-Thermal Effects 

Cn  1.038 

Fig. 22. Shell (0,3) Modal Frequency 
Vs. Orbital Time 

0        0.2       0.4       0.6       0.8 1 1.2       1.4        1.6       1.8 

Orbit period 

Fig. 23. Shell (1,3) Modal Frequency Vs. Orbital Time 

2.15 



m.   LARGE-ANGLE NEAR-MINIMUM-TIME MANEUVER OF 

RESHAPE WITH FLEXIBLE APPENDAGES 

Abstract 

In this chapter, we present our recent numerical and experimental results of the near- 
minimum-time maneuvers of the Naval Research Laboratory's Reconfigurable Spacecraft Host for 
Attitude and Pointing Experiments (RESHAPE) facility with flexible appendages. These 
maneuvers are designed as single axis maneuvers, but are tested on the three-dimensional testbed. 
The control strategy is based on the feedforward (open-loop solution) plus state-error feedback 
control. The open-loop solution is obtained by solving the so-called two-point boundary-value 
problem associated with the minimum-time maneuvers using a shooting method. This solution 
provides a bang-bang type control command for the prescribed reorientation requirements, i.e., to 
slew the structure from the known initial states to the final required attitude in a minimum-time 
sense. In the experiment, this open-loop control solution provides a "feedforward" control 
command and trajectories which the system is required to follow. The second loop, a state-error 
feedback control loop, is then designed to add guaranteed stability to the system, so that small 
disturbances during the maneuver and post-maneuver error can be damped out. The numerical 
and experimental results are presented to illustrate the success of this method. 

3.1 Introduction 

The objective of these maneuver tests is to achieve minimum-time or near-minimum-time 
maneuvers of a ground-based space structure with flexible appendages and, at the same time, to 
keep the vibration of the flexible components in a minimum. The Naval Research Laboratory's 
RESHAPE facility testbed is chosen for our test (refer to Refs. 1-4). The RESHAPE's 
configuration is shown in Fig. 1. The testing platform is supported by a spherical air bearing 
system and the platform can rotate freely about the pivot point, 0, the center of the sphere. To 
achieve the objective, a pendulum is attached vertically by a string to the edge of the RESHAPE's 
circular platform to represent the flexible appendage. A sketch of the RESHAPE's coordinate 
system with the appendage is shown in Fig. 2. The rigid body system is then augmented by the 
two degrees of freedom of the pendulum motion under the restoring force induced by the gravity 
on the pendulum. 

The first degree of freedom of the pendulum can be characterized by the swing angle, a, 
of the pendulum with respect to the vertical line through the hinge point, a. The second degree of 
freedom can be represented by the out of the tangential plane angular motion, i.e., by the angle 
between the projection line of the pendulum vector on the platform plane and the tangential plane, 
ß, as shown in Fig. 2. 
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In this test, we consider only small amplitude flexible vibration motion, since we do not 
want to excite the flexible vibration too much. Under this consideration, the 3-dimensional (3-D) 
equations of motion of the system have been derived. It can be seen that the out-of-plane equation 
of motion is coupled with other equations through a coefficient since, where a is the angle of the 
pendulum with respect to the virtual line. Therefore, in the linearization process that follows, the 
out-of-plane motion is neglected. As a result we consider only the swing motion of the pendulum 
in the tangential plane which can be effectively considered as one flexible mode. In our tests, we 
mainly consider large-angle maneuvers about the yaw axis. The motion about the roll axis and the 
pitch axis are kept small. This reduces the control design to single-axis maneuver control of a 
rigid body with a single flexible mode. However, the test is still a 3-D test. 

In the open-loop control design, a shooting method is used to solve the two-point 
boundary-value problem resulted from the Maximum principle for the maneuver problem. This 
solution provides a bang-bang type control command for the prescribed reorientation 
requirements, i.e., to slew the structure from the known initial states to the final required attitude 
in a minimum-time sense. In the experiment, this open-loop control solution provides a 
"feedforward" control command and trajectories which the system is required to follow. The 
second loop, a state-error feedback control loop, is then designed to add guaranteed stability to 
the system, so that small disturbances during the maneuver and post-maneuver error can be 
damped out. 

3.2 System Equations 

The 3-D dynamical equations of motion can be derived using Lagrange's approach. The 
kinetic energy of the system can be expressed as 

T=TM+TH+T
m (1) 

where the subscripts M, h, and m refer to the platform, the reaction wheels, and the pendulum, 
respectively. Then, 

V-^-k» (2) 

where <o is the angular velocity vector and JM is only the inertia matrix of the platform about the 
pivot point, O. Both o> and JM are expressed in body axes (i, j, k). Next, by assuming that the 
rotation axes of the three reaction wheels are aligned orthogonally along the three body axes (i, j, 
k), respectively, we can obtain 
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rA=-2(oVA a> +-Z./,Qf+2./.0jtt,     (/= 1, 2, 3) 
1 i        '     2 i i 

(3) 

where Jhi is the inertia matrix of the rth wheel with respect to the pivot point, O, Jt is the moment 
of inertia of the rth wheel about its rotation axis; and Qt is the relative angular rate of the rth 
wheel. The kinetic energy related to the pendulum can be obtained as 

m    2 
L TL+2a>r(R+L)L+—o>V a 

m 
(4) 

where m is the mass of the pendulum, Jm is the inertia matrix of the pendulum with respect to O, 
and (referring Fig. 2) 

RT=[RX   R    RM],    J?,-ÄiC0BP-»   V^sinß, 

L=L, 

sin a sin P 

sinacosß 

-cosa 

L=L, 

dcososinP + ßsinacosß 

dcosacosP - ßsinasinP 

ä since 

P = ß-ß, 

where Rx is the magnitude of the vector R projected onto the (i, j) plane of the RESHAPE 
coordinate system (Fig. 2). The "d" sign represents a 3x3 skew-symmetric matrix associated with 
a vector a, 

0 "°3 °2 

a3 0 ~ai 

-a2 ai 0 
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The virtual work related to the gravity can be obtained as 

6W=-bQT[(M+mh)gb + mg(R+L)]a3-mg(&aL\6$Lp)a3 (5) 

where 66 is the virtual angle displacement vector, a3 is the third column of the direction cosine 
matrix of the platform, 

A = 

2fao+*iV1 2(?1?2+?0?3) 2(qiq3-q0q2) 

2(q1q2-q0qj 2(q^q2
1)-l 2{q^*q^ 

2(qlq^q0q2)   2(q2q3-q^   2{ql^q3\\ 

Mis the mass of the platform, mh is the mass of three wheels, b is the position vector from the 
pivot point to the center of mass of the system without the pendulum, g is the gravitational 
acceleration constant, and q is the attitude quaternion vector, qT=[ q0 q, q2 q3] 

We now can obtain Lagrange's equations for the quasi-coordinates related to co, the 
rotational angles, q>, of the reaction wheels, and the pendulum swing angles, a and ß, 

(J     +Jm)to+JäÜ  * m(R+L)L = &—-m(£)L-Jma>+Q9 
(6) 

J.Q+J.U> = Xm day 
(7) 

where 

^ = 
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x is the torque acting on the reaction wheels, JM+h is the inertia matrix of the platform and the 
wheels together, and Qg is the generalized force vector. By substituting the generalized forces 
from Eq. (5) and Eq. (7) into Eq. (6), we can remove the term Q, 

Vu*+Jm-JJ*+'*<fl+L)I> 

dT = U+& m(L)-Jm(x>-[(M+mh)gb+mg(R+L)]a3 

(8) 

At the same time, we obtain the equations for a and ß, 

i    dJ 
m[LTL -Zj(Ä+Z)d>-2ZjZ<D-—w—-co] = -mga3La 

" m    da 
(9) 

.      i    dJm 
m[LTLa-Ln(R+L)ü>-2LfiLv>—w—-to] = -mga3L~ p m    öß 

(10) 

co s a sin P 

cosacosß 

sin« 

sinacosß 

-since sin ß 

0 

It can be proven that 

where 

L = äZ8+ßZp-(ä
2Z-2äßZ6+ß2Za) 

h-^ 
coscccosß 

-cosasinß 

0 

L   = L. 

since sinß 

sinacosß 

0 
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It can be seen here that for small angle a and ß, 

cosa-l,    cosP=cos(ß-ßI)l)'"COsß)ll 

sina-cc,     sinP=sin(ß-ßm)<--sinßm 

the ß motion Eq. (10) is coupled with co motion Eq. (8) and a motion Eq. (9) by a small quantity 
since. Therefore, for our present small cc amplitude analysis, we drop Eq. (10) from further 
consideration. 

For the purpose of simulation, we need to obtain the linearized equation of the system. In 
addition to small a and ß, we also assume small qi, q2, Wj and G>2. As a result, all second and 
higher order terms related to a, ß, qb q2, (J>x, and o2 are neglected, 

JTu>+m 

Ic 

Is a  = M+<O, 

-•/12Wl+(733--/22)t02+-723<03 

(/11-
JM)MI+J12M2+J13W3 

•/23<0r-/13<02 

•/3tü2Q3-J2ü>3Q2 

J1ü)3Q1-73O>1Q3 

j2u>lü2-jl(o2al 

■(M+m.)g 

b2-2b3(q2q3+qaqi) 

2b3(q1q3-q0q2)-b1 

2b1(q2qi+q(0l) - Ib&fc- q0q2) 

■mg 

Ry+ac+2l(q2q3+q0q1) 

2l(q(>q2-q1q^-lix
+as 

2Rx(q2q3+qdq1) - 2Ry(q1q3~ 9092) 

(11) 

mLl&+m[lc   Is   Lfljü = 2mu>3l(ca>2-su>l)-mg[2c(q2q3+q()qi)-2s(q1q3-q0q2)+Lla]     (12) 

Note that these are linear equations for cc, ß, qb q2, wl, and co2 only. Jv is the element of the 
constant inertia matrix JT, 

JT  =  JM*H+Jm-Jä 

where 
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m 

Ä2+/2   -RR    RJ x   y       x 

-RxRy Ä.V Ryl 

RJ      RJ    R? 

and 

l=Ll-RI,     c=ZjCOsßm,     s = Zxsinß)ii 

To further simplify the analysis, we can neglect the terms related to the gravity, the body rates, 
and the rates of the wheels in the w equation, and the terms related to the body rates and 
quaternions in the a equation, 

JTia +m 

Ic 

Is a   = u (13) 

mL1ä+m[lc   Is   LJt^d) = -mgL^ (14) 

The 2-dimensional (2-D) equations involving only co3 and a can be obtained immediately as, 

/wÄjZjCbj + mljö  = -mgijO (15) 

.2N   . 
(J(M.H)i-

JHs 
+ mRl)6>3+mLAä    =   «3 (16) 

3.3 Time Optimal Control of the 2-D System and 3-D Feedback Control 

The time optimal control for the 2-D system can be obtained by using the maximum 
principle. The formulation of the time-optimal control is based on the following cost functional 
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Jo '/ 

The Hamiltonian of the system can be formed by introducing costates and the necessary 
conditions for the optimal control can be derived. The control is of bang-bang type and can be 
obtained numerically by solving the associated two-point boundary-value problem. The shooting 
method from Ref. 2 is used for solving the nonsingular TPBVP. 

The solution of the optimal control of the 2-D system is used as the open-loop control or 
feedforward control of the 3-D system. This solution includes the quaternion, q(t), angular 
velocity, <o(t), and control, u(t). The solution for a(t) is not considered in the feedback control 
loop. The errors between these computed values and the measured values ("real") of these 
variables are 

** ■  9m - q(f),   «<•> = «- <o(/) 

where <om is obtained from the output of the rate gyros, and q,„ is obtained from integration of 
the kinematic equations using Euler's first order integration method. These errors, the error 
quaternion, 6q, and error angular velocity, 60, are used in the state-error feedback control loop 
to obtain the correction control, öu, 

6«, = -*piqM - kru>t,    / = 1, 2, 3. 

where kp and kp are constants. The resulting control signal is the combination of the open-loop 
control and the feedback control, 

u(t, bq, 6&0) = u(t) + 6M 

It is clear that the torque constraints for the open loop control (bang-bang type) should be set 
below the maximum allowable level of the physical system, so that some leeway can be left for the 
correction control. As a rule of thumb, we can use 80-90% of the allowable control for the open- 
loop control design and 10-20% for the correction control. This results in the near-minimum-time 
maneuvers under the allowable control constraints. 
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3.4 System Parameters 

The description of the RESHAPE facility can be found from Ref. 1. The RESHAPE 
structural parameters used in the simulations are listed below: 

Inertial matrix of the RESHAPE without the pendulum: 

JM*h~ 

14.42 .15 .28 

.15 17.85 .42 

.28      .42    27.82 

(ft-lb-se<?) 

Momentum of inertia of the reaction wheels: Jj= J2= J3=054 (ft-lb-sec2); 
Gravitational constant: g = 32.174 (ft/sec2); 
RESHAPE weight = 638.0 (lb); 
Angle between the position vector of the pendulum hinge point and body i axis: ß=7c/2; 
Length of the position vector of the pendulum hinge point: R^.5 (ft); 
z-coordinate of the position vector of the pendulum: B^ = 0.0; 
Length of the pendulum: Lt = 4.5 (ft); 
Pendulum weight: mg = 5.0 (lb); 
Position vector of the RESHAPE without the pendulum: b^O.O; b2 = -nüV ( M + mh); b3=0.0; 

Sampling Time: 0.05 sec; 
Feedback control gains: kp =[24.8846   30.2138   49.7636], k, =[44.22 53.69 88.43]; 
Maximum control torque for the open-loop control u3: u3max = 0.4 (ft-lb); 
Extra control effort for the feedback control are: 

6u3 = 0.001056-0.08976 (ft-lb), depending on the cases; 
Extra control for the other two axes (pitch and roll) are: ö u2 = Ö ut = 0.5Ö u3. 

3.5 2-D Optimal Control Solution and 3-D Simulation 

The 2-D dynamic equations (15) and (16) are used to find the time-optimal control 
solution. This is a single-axis maneuver of a rigid body with a flexible mode. We here consider 
only the rest-to-rest maneuvers and the associated boundary conditions of the state variables are 
chosen as 

o(0) = 0,     &(0) = 0,     <o3(0) = 0,    e3(0) = e30; 

o(rp = o, 6(9=0,    o>3(rp=o, e3(rp=o. 
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For the RESHAPE system with parameters described in section 3.4, we have obtained maneuver 
solutions from 03O = 1 deg to 630 = 180 deg. Two typical maneuver solutions, 25 deg and 180 deg 
maneuvers, are shown in Fig. 3 and Fig. 4, respectively. The time-optimal controls for these 
maneuvers are of bang-bang type and three intermediate switches are required. The minimum time 
for the 25 deg maneuver is 11.312 sec and three intermediate switches are separated by 0.6 sec. 
The minimum time for the 180 deg maneuver is 30.091 sec and the time interval between the 
three intermediate switches is 0.6 sec. The occurrence of triple switches is clearly associated with 
the addition of the flexible mode included into the system compared with the purely single-axis 
maneuver of a rigid body. The well-known result for the latter case is a single switch in the middle 
of the slewing period. It is shown that the pendulum angle and pendulum rate are very small for 
this particular RESHAPE system setup. This small amplitude vibration is also observed during the 
hardware test. 

We have observed, through computations, that the time interval between the triple 
switches is different from case to case, depending on the system parameters and initial conditions. 
If all other parameters are fixed and only the initial condition, 03O, is changed from 1 deg to 180 
deg, the time interval between the three switches changes periodically. At some particular values 
of 03O, we are able to obtain a zero interval. This means a single switch case where all the three 
switches are collapsed together, even though there is a flexible mode involved here. But these are 
only a few isolated cases and an elaborate analysis will not be conducted in this report. Except 
these isolated points, all other cases result in triple switches. We choose the 25 deg maneuver 
because the triple switches in this case are well separated, and choose the 180 deg case because it 
can be considered as the "largest" angle rotation for the rest-to-rest maneuvers. 

The solution for these maneuvers is usually not available in analytical form compared with 
the classical single-axis rigid body maneuver, and therefore, can not be generated at run-time. 
However, we are interested in finding out the advantage of applying this solution to the maneuver 
test over using the single switch solution. Before we go to the test, let us look at results of the 3- 
D simulations for these two open-loop control commands. The results for the triple switch and the 
single switch results are presented in Figs. 5, and 6 for the 25 deg maneuver case, respectively. 
The single switch command for the latter method is obtained as if there is no flexible part. By 
comparing these two figures, we can see that using the triple switch command will reduce the 
vibration of the pendulum both during the second half of the maneuver and post maneuver. This in 
return will reduce the attitude errors and rates. The pendulum angle and rate are also shown in 
Figs. 5 and 6. The testing results for this comparison will be discussed later. 

We should point out that we use both control command feedforward as well as state 
trajectory feedforward in our control strategy. This is quite different from using only the 
command feedforward method. Actually, we can observe this by examining Fig. 5 and Fig. 6. 
Before the first switch near 5 sec, both control commands (open-loop) are the same u3=-0.4 ft-lb. 
But the 3-D responses of the control, u3 are different. Also the 6q3 in these two figures are 
different. This is because the feedforward trajectories for these two method are different, as 
shown in Fig. 7. 
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The time responses of the reaction wheels for the triple switch simulation, q> and Q are 
also shown in Fig. 7 for the case 6u=0.03696. Other cases are similar. The nonzero values for Q 
are due to the gravitational torque terms presented in Eq. (11). This phenomenon is also observed 
during the test, where the reaction wheels for the x and y axes keep running after the maneuver. If 
the values of a or q are not zero, there will be some gravitational torques on the platform which 
balance the torques from the reaction wheels. Even though the torques applied to the wheels are 
zero, other parameters or factors may also lead to the nonzero momentum accumulation of the 
wheels during the maneuver. Further analysis is needed on this subject. 

3.6 3-D Test Results and Numerical Simulations 

Using the feedforward and state-error feedback method described in section 3.3, we have 
conducted the hardware tests and 3-D numerical simulations. Five tests for the 25 deg maneuver 
are presented here as shown in Figs. 8-11. The first four tests are using the triple switch solution 
and the fifth test is using the single switch method for the comparison purpose. For the triple 
switch maneuvers, we have used four different extra control effort levels, 6u3, for the feedback 
control use as discussed in section 3.3. These values are 0.001056, 0.01056, 0.03696, 0.08976 
(ft-lb) for the four cases, about 0.2% to 22% of the open-loop control saturation level, 0.4 (ft-lb). 
Also shown in Figs. 8-11 are the 3-D simulations using the 3-D equations (7), (11), and (12). 

From Figs. 8-11, as the extra control effort is increased, the errors of q3 are reduced and 
the overshoot of oo3 at the end of the maneuver is also reduced. The errors for ql5 q2, <ou and co2 

do not change significantly. We also see that there is no similarity between testing results and 
simulation results for errors of ql5 q2, wb w3, ub and u2. Further analysis needs to be done in this 
area. We also see that the control history of the simulation is close to the open-loop control 
command (not shown), while the control signal from the test deviates more from the open-loop 
solution either for the smaller leeway case, Fig. 8c, or the larger leeway case, Fig. 1 lc. We believe 
that the overshoot of the control at the end of the maneuver is due to the inaccuracy of the inertial 
term and the difference in the inertial terms between the 2-D and 3-D representing models of the 
system. 

In Fig. 12, we put the triple switch case and single switch results together for comparison. 
We observe that the triple switch method results in less residual vibration, even when the error 
magnitudes are the same. This indicates the advantage of using the triple switch solution 
especially for the well-separated time interval between the three middle switches. 

The test for 180 deg maneuver are presented here in Figs. 13-15. Three different levels of 
6u3 are considered. Again, either small leeway or large leeway results in large deviation of the 
control from the bang-bang type. The case, öu3=0.03696 (ft-lb, about 9.2% of 0.4 ft-lb), in Fig. 
14 seems to be the closest one to the bang-bang type control of the open-loop solution. It is also 
seen that the errors in the quaternion during the maneuver are reduced as more control freedom is 
allowed. 
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Another problem with the 180 deg maneuver is that the triple switches presented in the 
simulations do not occur in the test. The reason for this needs to be found out. One reason might 
be that the 180 deg maneuver requires longer slewing time than the 25 deg maneuver. The "mid" 
point or middle region is "relatively" small compared with the whole slewing time and is, 
therefore, not significant for the feedback control adjustment. 

3.7 Conclusions 

A practical control strategy for the minimum-time maneuver problem has been developed 
and successfully applied to the RESHAPE hardware test facility. The open-loop time-optimal 
control provides a basis for the nonlinear large-angle near-minimüm-time maneuver, while the 
linear feedback control takes care of disturbances during the maneuver and damps out the residual 
vibration after the maneuver. This is the first time that the bang-bang type and feedback control 
strategy has been applied to the RESHAPE hardware testing facility with flexible appendages. 

An extensive optimal control solution for the 2-D system has been obtained. 3-D 
simulations by using both triple and single switch methods have been conducted. Use of the triple 
switch command will reduce the vibration of the pendulum and the attitude errors both during the 
second half of the maneuver and post maneuver. As the extra control effort is increased, the state 
errors are reduced. An adequate level of the extra control leeway seems to be about 10% of the 
open-loop control saturation level so that the control will be close to the bang-bang type, the 
maneuver will be near minimum-time, and less post maneuver vibration and state errors will 
result. 

The success of the test is demonstrated by the excellent correlation between numerical 
simulations and experimental testing results. This test demonstrates the applicability and the 
effectiveness of this simple feedforward and state-error feedback control strategy. This technique 
can be easily transferred to other types of three-axis, nonlinear, and time-optimal maneuver 
experiments or actual tests. 

Further analysis needs to be done in the areas such as the identification of the isolated 
single switching point, the reduction of the terminal angular rates of the reaction wheels, the 
determination of the reason for the non-similarity of the state errors between the test and the 
simulations, and the reason for the disappearance of the triple switches in the test for the 180 deg 
maneuver case. Improvements and extensions of the control strategy to three-axis slewings and 
vibration suppression of the rigid platform containing other flexible appendages or antennas are 
recommended. 
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IV.    CONCLUSIONS AND RECOMMENDATIONS 

The effects of solar induced heating on a large, thin, shallow spherical shell in orbit are 

modelled mathematically. Such a structure would be representative of proposed orbiting 

antenna/reflector systems. For a 100 m. base radius shell made of polyamide a maximum thermal 

gradient of 3.6° C is predicted across the 1 cm shell thickness. As the system moves in its orbit 

the shell is alternately heated and cooled in a periodic manner due to the periodic change in the 

amount of solar radiation to which it is exposed. The shell is predicted to experience a 

maximum increase in its radius of curvature of 17m (nominal value, 5000 m) with smaller 

increases in its other dimensions. There is no corresponding significant increase in the solar 

radiation torque acting on the shell but there is a significant change in the shell's flexible 

vibrational frequencies. In fact for most of the first few modes the peak value of the frequency 

attained in the presence of solar-thermal effects is actually larger than the nominal frequency of 

the next highest mode. This means that when the mission requirements stipulate very accurate 

pointing and shape control that particular emphasis should be placed in the design of the 

controllers that limit the transverse vibrations. 

Possible extensions to this work could consider the thermal shock problem encountered 

when the system transfers from the sunlit side of the orbit to the shadowed side and also the effect 

of local shadowing by different subsystem components on the rest of the system elements. 

Another extension to this work is to develop a model that could predict the solar-thermal effects 

on the tethered-shallow spherical shell-subsatellite system. This would represent an extension to 

the research reported in Chapter III of Volume I of this report, which emphasized the solar 

radiation effects on the tethered reflector sub-satellite system. 
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A practical bang-bang type and feedback control strategy for the minimum-time maneuver 

problem has been successfully applied for the first time to the Naval Research Laboratory's 

RESHAPE hardware test facility with a flexible pendulum-type appendage. The control strategy 

is based on the feed forward (open-loop solution) plus state-error feedback control. The open- 

loop solution is obtained by solving the related two-point boundary value problem using a 

shooting method. The success of this testing is shown by the excellent correlation between the 

numerical simulations and the experimental test results. 

The technique developed here can be easily applied to other types of three-axis, nonlinear, 

and time-optimal maneuver experiements. It is suggested that this technique could be applied to 

more sophisticated hardware facilities such as the Phillips Laboratory's ASTREX faciility in the 

future. Unfortunately, during this AFOSR grant year it was not possible to schedule testing time 

with the original ASTREX facility at Edwards AFB although preliminary data was exchanged 

and numerical simulations were performed. Perhaps, with the relocation of the ASTREX faciility 

to Albuquerque, NM, another opportunity might be available. In addition to possible future 

testing with the ASTREX, three-axis slewing and vibration suppressionof the RESHAPE platform 

with other types of flexible appendages such as beams or antennas is recommended. Depending 

on the type of attachment of the appendages the effect of gravity may have to be compensated 

such as with the use of follower support cables and wires. Such devices would then have to be 

included in the RESHAPE system mathematical models, similar to the way that they are currently 

included in the ASTREX models. 

4.2 


